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Abstract-The effects of pressure gradient on turbulent heat transfer to or from planar surfaces are 
examined. Only incompressible. equilibrium thermal boundary layers are investigated. The equilibrium 
condition is characterised by the Clauser parameter p. Temperature profiles which are parametric in fl and 
the turbulent Prandtl number, Pr,, have been calculated for the range -0.54 < fi d co ; corresponding in 
one end to a favorable pressure gradient flow beyond which no equilibrium boundary layer is possible and 
in the other end to turbulent Row at incipient separation, respectively. It is found that an overlap exists 
between the temperature law of the wall region and the outer defect law region for all values of /I and Pr,, 
except when /I -+ ;x. The existence of this overlap region gives rise to an expression for the Stanton number 
which is shown to be a function of fi and Pr,. At incipient separation, the skin friction coe%cient goes to 
zero while the wall heat flux remains finite. However. the wall heat flux and the Stanton number in this 
limit cannot be determined because oF the neglect of viscous effects in the present analysis. A modified 
Reynolds analogy that accounts for the effects of /I and Pr, is deduced and the classical Reynolds analogy 
is shown to be valid only in the limit of/j goes to zero, Pr, goes to I and the Reynolds number based on 

the displacement thickness approaches infinity. 

INTRODUCTION 

THE STUDY of isothermal, incompressible, equilibrium 
turbulent boundary layers on plane surfaces was first 
attempted by Clauser [I]. He pointed out that equi- 
librium boundary-layer flows can be established if the 
parameter /j = &*(dP/dx)z, is maintained constant 
throughout the How. Here, dP/dx is the streamwise 
pressure gradient. Clauser also showed that the outer 
boundary layer can be analysed by assuming an eddy 
viscosity KM such that K, r; U,6*. The work of 
Clauser was later extended by Townsend [Z, 31. How- 
ever, the problem was being anaiysed in a piecemeal 
fashion and the theories proposed involved a consider- 
able amount of approximations and empiricism. 

A rather complete analysis of isothermal, incom- 
pressible, equilibrium turbulent boundary iayers on 
plane surfaces was later given by Mellor and Gibson 
[4J. They based their study on the well-known two- 
layer model for turbulent boundary layers and a 
derived eddy viscosity function that is valid in the 
entire region outside of the viscous sublayer. The 
extension of the eddy viscosity function to include 
viscous effects was given by Mellor [S] in a con~panion 
paper. In their analysis, Meltor and Gibson [4] 
invoked basic physical assumptions similar to those 
made by Townsend 12, 31; however, the empirical 
information required was limited to that extracted 
from zero pressure-gradient flow only. Consequently, 
the theory is on stronger theoretical ground. Besides, 
Mellor and Gibson [4] demonstrated that the incipient 

separation profile of Stratford 161, where z, % 0, was 
also a member of the family of equilibrium profiles 
obtained with p held constant. Subsequent measure- 
ments of boundary layers with zero, negative and 
positive pressure gradients by Kline et al. [7] provided 
further evidence to support Mellor and Gibson’s [4] 
analysis. Their measurements showed that an overlap 
region indeed exists; thus giving rise to a logarithmic 
law of the wall and verifying the validity of the skin 
friction coefficient determined from the log law. 
Therefore, Mellor and Gibson’s [4] analysis of the 
equilibrium layers was by far the most thorough and 
complete to date. 

On the other hand, thermal equilibrium turbulent 
boundary layers have received scant attention. The 
most studied case is the thermal boundary layer 
developed on a flat plate with zero pressure gradient 
(j = 0) and constant freestream and wall tempera- 
tures. Some careful measurements by Reynolds et al. 
181 and Perry et 01. [9] showed that the temperature 
profiles are quite similar to the velocity profiles and, 
therefore, can be described by the two-layer model 
commonly used to analyse velocity layers. Near the 
wall, the temperature is determined by the fiuid prop- 
erties, such as density p, kinematic viscosity v, thermal 
conductivity k, specific heat at constant pressure C,,, 
and the wall variables given by wall shear stress t,, 
wall heat flux qw and the normal coordinate 1’ mea- 
sured from the wall. Dimensional arguments then lead 
to the temperature law of the wall, 
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NOMENCLATURE 

channel half width 

thermal conductivity 

acceleration paramctcr. 
VI:‘, 
c;j 

constant in the definition of the outcr-layer 

eddy viscosity. 0.0 I6 

thct-nial cdd\i diffiisiviL> 

eddy visoosit) 

dimensionless parameter, t,y,’ 

Nussclt number, SI IV Rr,, 

mean prcssurc 

Prandtl number 

turbulent Prandtl number 

total heat flux 

wall heat flux 

Reynolds number based on the strcum 

coordinate. I,‘, \-, is 
Rqnolds number based on the 

displacement thickness. I:, 6”: I’ 

normal foordlnatC. 

f‘la~scr p;ir;micter. ,r* tdP ti.\-):T,, 

skin friction delincd for sm;tH /i. uj 1 
boundary layer- thicknw 

tiiq~laccmen~ thickness. I (i, i 
” ’ ,.-ci 

.I/’ 

‘I 
I)* 

ticfbct thickness. 1’ i I.’ dl, = 

fluctuating tcmpcr;tturc 

mean temperature ditfercncc between the 

fluid and the wall 
friction tcmpcraturc. - q, ~)C‘,,U. 

pressure tcmpcraturc. CT1C3, 

t‘recstream tcmperaturc 

\OII Karman constant for the vclocrty law 

of the wxtl. 0.41 

5 on Karman constant for the tcmpcraturc 

I;IW of the wall 

hkin friction dctincd for large {i. y/I’ ’ 
fluid kinematic \,iscnsi~) 

stretched dimcnsionlcss 1’ coordinate 

lluid density 

total Jicar stress 

wall shear .strcss 

dimensionless eddy viscosity function 

dcfincd iitr small p 

dilnct~sionl~ss eddy thermal diffusivit> 

d&cd for small 1;. (f f’r, 

dimensionless eddy viscosirt/ function 

dutincd for large Ii. 

(1) turbiilci~cc. the freestrcam tcmpcixlirro 0 , is small 
enough for the tlow to be considcrcd incomprcssibic 

and the variations of fluid proper-tics across the layer 

Strictly speaking, the arguments leading to (1) arc arc small. If. in addition, the ilow is assurncd IO ll:ilc 

valid only for Row GISCS whci-e thcrc is no frccstrcam ;I constant flux rcpion nc;ir the \\all. the t~rnl~~r~~~~:i-~ 
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profile outside the viscous sublayer can be shown to 
be described by the logarithmic law of the wall, 

(2) 

The value for tig could be determined through classical 
mixing length arguments and by assuming the thermal 
eddy diffusivity KH to be given by K, = K,/Pr,. 
Therefore, according to Kader and Yaglom [lo], klc 
can be shown to relate to the von Karman constant ti 
by Q, = IC/PY,. In general, B, is a function of Pr. For 

air, Kader and Yaglom [IO] showed that BI, = 3.8 
correlates well with flat-plate boundary layers and 
pipe flow heat transfer data they have examined. 
Besides, measurements in square duct by Brundrett 

and Burroughs [ 111 and the flat-plate boundary-layer 
experiment of Perry and Hoffmann [ 121 also lend sup- 
port to (2) with B,, = 3.8. As a result, the temperature 

law of the wall can be taken to be given by (2) with 
K,, = ti/Pr, and B,, = 3.8 for air. 

Far away from the wall in the fully turbulent region, 
the temperature is nearly independent of the molec- 
ular diffusivities. However, it is affected by the boun- 
dary layer thickness, 6, and the freestream tempera- 
ture, 0 ,_ Dimensional arguments again lead to 

If an overlap region exists, it can be easily shown that 

UOI 

0, -0 

0, 
-= -iln _II +A,. 

0 
(4) 

Kader and Yaglom [lo] found that A,, is different for 
flows in pipes, channels and boundary layers. For pipe 
flow, according to the data examined by Kader and 

Yaglom [lo], A” H E 0 is found to give a good cor- 
relation between (4) and the measurements. However, 
for flat plate boundary layers, Kader and Yaglom [lo] 
could not find any reliable data to determine .& 
with sufficient accuracy. Nevertheless, they assumed 
A”,, = 2.35 based on the argument that K,, = KM in the 
outer region and that the dimensionless velocity and 
temperature profiles in this region have the same 
shape. If these dimensionless profiles are indeed simi- 
lar, then according to the analysis of Mellor and 
Gibson [4], 2, z 1.6. Therefore, in spite of the de- 
tailed study of Kader and Yaglom [lo] and Yaglom 
[ 131, the correct value of &, even for flat plate bound- 
ary layers, is not known. Besides, the assumption of 
KH = KM in the outer region is not quite correct. The 
data examined by Kader and Yaglom [lo] and 
Yaglom [13] suggest a value of KH = KJO.85. 

For flat plate boundary layers, the mean momen- 
tum and temperature equations are similar. In 
addition, the boundary conditions for U and 0 are 
identical ; that is, U and 0 go to zero at the wall and 
approach their free stream values Ui, and 0, at the 

edge of the boundary layer. If KH = KM is assumed, 
the equations become identical and the same solution 

for velocity and temperature is obtained. This suggests 

that A” H E 1.6, the same as that determined from the 

isothermal study of Mellor and Gibson [4]. In general, 
KH is not equal to KM; therefore, a study of the 

equilibrium thermal boundary layer in a manner 
similar to that proposed by Mellor and Gibson [4] is 
suggested. This analysis could also bc used to assess 

the effects of pressure gradient on heat transfer and 
the validity of the Reynolds analogy. However, it will 
be limited to cases where the aerodynamic and thermal 

boundary layers are in equilibrium. 
Measurements on heat transfer in flows with 

streamwise pressure gradient are scarce [9, 131 and are 
essentially non-existent for situations where fl = con- 

stant. Some measurements [14, 151 with accelerating 
external flow were available and a limited amount of 

decelerated flow data were also included in ref. [14]. 
However, the boundary layers investigated in these 
studies were not in equilibrium. The reason being that 

the acceleration parameter K specified in these studies 
was larger than the minimum fl where equilibrium 
boundary layers exist [4]. For example, the smallest 
K specified in the study of Moretti and Kays [14] is 
K z 0.3 x lo-- ‘. However, according to Mellor and 

Gibson [4], the smallest value of fl where equilibrium 
accelerated boundary layers exist is /I = - 0.54. It can 
be shown that K and b are related by the expression : 
K = -fly’/R,,. Therefore, if p = -0.54 is assumed, ;J 
is taken to be 0.035 at a R,. z lo1 investigated by 

Moretti and Kays [ 141. K is estimated to be 0.7 x 10 ’ 

which is smaller than K z 0.3 x 1 O- ‘. Other values of 
K investigated [14, 151 were much larger than 
0.3 x 10eh; therefore, the boundary layers studied 
were not in equilibrium. On the other hand, fi for 
a fully-developed channel flow can be expressed as 
(-6*//z). Since 6*/h is most likely less than 0.54, fully- 
developed turbulent channel flow is an equilibrium 
flow. Therefore, recent data on direct numerical simu- 
lation (DNS) of fully-developed turbulent channel 
flow with heat transfer [16-l 81 can also be considered 
as viable data sets besides the measurements of Perry 
et al. [9] and Yaglom [13]. 

In view of the present state of knowledge of thermal 

equilibrium boundary layers, an analytical study of 
such flows is warranted. Therefore, the present objec- 
tives can be stated as follows. The first objective is 
to investigate the family of equilibrium temperature 
profiles and determine their dependence on the param- 
eters p and Pr,. A second objective is to evaluate the 
correct value of 2, for flat plate boundary-layer flows 
and the parametric variations of A,,(/$ Pr,). Finally, 
the third objective is to study the validity and extent 
of the classical Reynolds analogy and formulate, if 
possible, a more general Reynolds analogy that 
depends on /I and Pr,. This general Reynolds analogy 
should approach correctly the classical Reynolds 
analogy in the limit of fl goes to zero and Pr, goes 
to 1. 



FORMULATION 

The flow under investigation is assumed to bc two- 

dimensional and incomprcssiblu and 0 is cunsidcrcd 

s~nall. Furthcrmorc, I’recstream turbulence is assumed 

to be ncgligiblc. Lndcr the assumptions. the go\crn- 

ing equations arc equally applicable for coofcrl 01 

heated wall thcrmul boundary condition. Thereliw. 

in the Ibllowinp analysis. no distinction w!ll bc made 

belwcen thcsu 1~0 casts. Only cyriilihriuni tfms 

charactcrised by the paramctor ii = constant mcr 

smooth plant walls at constant t~inper~tur~ arc imt- 

&cd. .~itllo~~~li the leestream v&city IS dio~~cd lo 

vnrh. only flows with constant fi.ecalream lcmpel-ature 

arc considered. The analysis l’c~llows closely thak 01‘ 

Mcllor and Gibson [4]. ThcrcI‘orc, the g>vcrning 

ccluations ibr boundary-layer Hews with heat II-ansli-I 

cun bc written ii\. 

(7) 

The Boussincsq definition ol‘ an eddy difl’usivity is 

adopted. so that 

For bound~lry-layer ~10~s. d1”d.v is pivcn by the 

Bernoulli eq~~ti~~n applied to the i*cestream. In other 

words. ~ (I :p)(dP:ds) = Li, (dL.‘, ,‘d.r). Finally. the 

boundary conditions can be conveniently stated as 

rollows : 

I ‘(_Y, 0) = O(.Y. 0) = 0, ( I Oa) 

(lob) 

( 1 Oc) 

O( Y. 1’ --F XJ) = 0 / (IOC) 

Equations (I 0b.c) replace the USWI no-slip conditions 

at the wall and simply state Ihat the shear stress and 

heat flux must approach the wall shear slrcss and wall 

heat flux correctly ;IS J' goes to zero. Equation (1Od) 

is chosen as the outer boundary condition instead 

01‘ the conventional I!(.Y,J, -+ Y_) = U, (.u) bccausc it 

rcyuires the displacement thickness (and hence the 

momentum thickness) 10 be fin&c. 

Inhcreni in the analysis ot‘Mcllo~- zrtd Gibson 141 i\ 

the assumption ofconstant shc;ir strc5s in the VWWLI~ 

bublayer. This ~lssulnpti~n alfows the wall bo~~i~d~~r~ 

condition (fob) to bc specified and the eddy viscosity 

i‘unction (1 I ) to hc adopted tar the analysis of the 

Inner layer without having to xcount for \~iscous 

ctkcts. 611 other words. their formulation ncpiccts the 

viscous sublayer by bridging the fully turbulent rugion 

to the wall through a constant slrcss layer. Mcllo~ 

and Gibson [4] l’ound that thcil- approach gave /‘;Lil-I) 

;iccuratc results as long as the Ilow Reynolds number 

is sulticicntly Ii?l-gfJ. ExperimenU cvidcncc in support 

oi‘ such an assumption cat IX plcancd from Ihc 

I~~~~~su~~I~~~I~~s d Kline or ai. [7]. uhcrc ;I cons~tni 

~trc~ layer- wax shown to cvizt for boundat! I;t\.crs 

in 7cro. negative and posiiivc prcssurc gradients. A 

dct.ailed consideration of‘ the VISCOUS sublaycr and a 

comparative examination ol’ th i: various Cddy \iS- 

cosity functions suitable for its analysis has hecn glv211 

b! Mellor [Sl. The present analysis adopts the 

appro;lch of Mcllor and Gibson [4] and I‘urthL’r 

~SSLIIIW, that the heat flux is also constant in the vi+ 

COLIS suhlaycr. Therefore, :his additional asamption 

ullow~ hc thermal boundary condition ( I Oc) lo lx 
specified consistent with the boundary condition ( IOb! 
Ibr the velocity field. Besides havinp to limit the :III:I~:- 
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sis to high-Reynolds-number flows, one major advan- 

tage of the neglect of viscous effects is that there is no 

need to determine the relative thickness of the velocity 

sublayer and the thermal sublayer. In other words, 
the analysis can be carried out by simply assuming 
that the shear stress and heat flux are constant across 
a region defined by the larger of the velocity sublayer 
and the thermal sublayer depending on the thermal 
boundary conditions. 

THE DIMENSIONLESS VELOCITY AND 

TEMPERATURE PROFILES 

Defect solutions of the form 

are sought for the mean velocity and mean tem- 
perature profiles. With these definitions for U and 0 
and the assumption of a constant turbulent Prandtl 
number, the following expressions can be deduced for 
the shear stress and the heat flux. They are 

where the primes applied to f and g denote differ- 
entiation with respect to g and the Stanton number 
St is defined as 

(16) 

The dimensionless eddy viscosity is defined by 
cp(q) = K,/d*U, while the corresponding thermal 
eddy diffusivity is given by Q,(V) = K,/6*U, = 
cp(q)/Pr,. Thus defined, cp(q) can be written in terms 
off by making use of (1 l), (12) and (13a) and the 
results are : 

cp(4) = “2$lf’“l ; ‘I G e, (174 

d?) = Kc; rl 2 e, (17b) 

where e is given by the larger of the two positive roots 
of the equation ~*q~)j""l = Kc. 

According to Mellor and Gibson [4], the velocity 
profile away from the viscous sublayer can be 
described by a two-layer model; namely, the log- 
arithmic law of the wall, 

U 1 yu, 
-==lnu+B, 
4 

and the defect law 

(18) 

an overlap between these two regions results in a skin 

friction equation given by 

1 2 “2 1 6*u, -_= _ 
0 Y c, 

= -ln---- 
K 

v +B+A(B), (20) 

where 6*U, = Au, has been substituted into (20). 
Furthermore, (19) and the von Karman integral equa- 
tion can be used to derive the following relations 

(22) 
The range of p in which equilibrium boundary layers 

exist and the particular U(x) and A(x) distributions 
implied by a constant /Y have also been examined by 
Mellor and Gibson [4]. For the sake of completeness, 
these relations are quoted here ; the interested reader 
should consult Mellor and Gibson [4] for details in 
their derivation. Equilibrium turbulent boundary layers 
are found to exist when the distributions of U(x) and 
A(x) satisfy the following relations : 

f-J, 
-[ 

l_flY2(o) f m 
ur (0) m 1 6*(O) ’ (23) 

A y(o)6* u, I,*’ 
p=p 
A(0) Ye* = [--I ~co@) (24) 

With these distributions, the range of fi in which equi- 
librium flow exists can be determined for a given 
Reynolds number. Mellor and Gibson [4] evaluated 
the range for R,.(O) = 105. They found that m is 
bounded by the range -0.23 d m d - 1. The two 
limits correspond to fi = co and fi = -0.54, respec- 
tively, and the physical meaning of these limits is that 
/l = co represents a flow at incipient separation while 
/3 = -0.54 represents the lower limit beyond which 

no equilibrium flow exists. It can be seen that the 
lower limit leads to the condition AU, = constant, or 
the defect thickness decreases inversely as the free- 
stream velocity in an accelerated flow. 

With these simplifications, (6) and (7) can be 
reduced to two third-order ordinary differential equa- 
tions for f and g. The equations and the associated 
boundary conditions are : 

(d-7-B 
( > 
; + 1 

x I N I, Y/K vrf -?!I?- + 1+y,K ___ (f'+Yff"-Yf'2) 
1 

+fi(y’- yf’*) = 0, (25) 

where IC = 0.41 and B = 4.9 are found to correlate well 
with data, and A (8) is parametric in b. The existence of 

Y/K 
+- 

l+yK 
= 0, (26) 



f(O) = 0. Lf'(v)l,,-. = 1. [cpfy,,,,, = -- 1. 
(27&t&C) 

.!AO) = 0. Ld(rl)l,,+ / = 0. [w"l,, 1// = ~~ 1. 
(X1,h.c) 

where the primes in ;‘, I/, . A and St denote differ- 
entiation with respect to .I. 

The classical Reynolds analogy [20] for Rat plate 
turbulent boundary layers with K,, = K, assumed can 

be stated as St = 19’. However, from flat plate boun.- 
dary-layer data examined by Kader and Yaglom [IO], 
it appears that KH = KM/Pr, with Pr, = 0.85 gives the 
best overall correlation between (I ) and (2) and the 
measurements. Therefore, S/ = ;s’ is not quite valid. 
and it follows that the classical Reynolds analogy 
would not be suitable for heat transfer analysis with 
pressure gradient effects. For these flows. a general 
Reynolds analogy given by 

where C is taken to bc parametric in /j and IV,, could 

be proposed. Evidence in support of this proposal 
can be found in the stratified flow measurements of 
Businger et trl. [2l] in the atmosphere and those of 
Arya 1221 in a wind tunnel. These data wcrc obtained 
in a zero pressure gradient environment. Howcvc~-. 
there is an additional body force acting on the flow 

due to buoyancy effects. As a result, Arya [32] showed 
that C depends on the bulk Richardson number, 
which is a dimensionless parameter characterising 
buoyancy effects. 

Substituting (29) into (25) and (26) and integrating 
the equations once gives rise to two second-order ordi- 
nary differential equations for f’ and 9. In writing 

down these equations. boundary conditions (27~) and 
(28~) have been used to evaluate the integration con- 

stants. The final equations are 

and the remaining boundary conditions arc given by 
(27a.b) and (28a,b). These equations are parametric 
in 7, [j and Pr, ; therefore, they can be solved once the 
parameters arc specified. 

TRANSFORMATION FOR LARGE /i 

It is clear that as 11’ + X_ or t, --f 0 (tlow at inciplcnl 
separation), the solutions for./” and 8’ would increase 
indefinitely. Furthermore, the approximate value of ‘1 
marking the edge of the boundary layer dccreascs as 
ii increases. Numerically, this latter behavior is \‘cI-> 
undesirable. If the equations arc to be solved properly. 
these singular behaviors have to be dealt with. Mellor 
and (Gibson [4] suggested transforming the cyuations 

by redefining a new dimensionless coordinate so that 
as /I -+ X. the new coordinate will also approach iniirut;, 
Conseyucntly. the following transformation w;th pr<>- 
posed ; namely 

The physical interpretation of this transformation IS 
that it leads to the definition of a ‘pressure vclocit)‘. 

uF = [6* (dPl’ds),‘p] ’ ‘, which is finite. It follows that 
the definition of F’ is given b> 

and (33~) leads to /. = I(,,; I;, which is also finite. 
If the transformed temperature profile G’(t) is to 

remain finite as [j + X, a suitable definition for (; ‘(<J 
will hc 

This requires 0, to be finite as /i + Y_. From (I 6) and 
(27j, it can be shown that 0: = C’@, Therefore. if 
0, is defined as 

o,, = (‘i,@ , (3hJ 

it will remain finite as /j -+ ‘I This suggests the fol- 
lowing transformation for ,Jg) : 

g(r) = G(C). q’(q) = /I’ ‘G’(<). (37a.h) 

(37&l 

The expressions for /I and St can now be written a> 

With the substitution of the transformations (32). 
(33) and (37), equations (30), (3 I) and the associated 
boundary conditions can be written as 
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+2F-1 
s II 

F’*dt = -$, (40) 

F(0) = 0, F(( + a3) = 1, (42a,b) 

G(0) = 0, G’(t -+ co) = 0, (42c,d) 

where the eddy viscosity function (p(t) is defined by 

m,(t) = rc2t21F”I, 5 ,< E, (434 

B(5) = Kc, 5 2 E, (Qb) 

and E is again given by the larger of the two positive 

roots of the equation n2t2/F”I = Kc. Therefore, it can 
be seen that the equations are regular as b + co and 
they can be solved subject to boundary conditions 
(42) using conventional numerical techniques. 

METHOD OF SOLUTION 

Mellor and Gibson [4] suggested solving (30) 
and (40) by expanding f and F in terms of y 
and 1, respectively, so that f= fo+ yf, + 0(y2) and 
F = Fo+lF, + 0(,12). Implicit in these expansions is 
the assumption that y and 1 are small. As a result, the 
equations forfo, f,, F,, F,, . . were parametric only 
in fl and were solved using a Runge-Kutta technique 
for a given p. Therefore, for a given R,., the velocity 
profiles can be calculated for any value of /?. Mellor 
and Gibson [4] calculated the velocity profiles for the 

range -0.54 <p < co at a Rgq = 105. For ease of 
comparison, the present calculations are also carried 
out for the same range of p and R,,. 

The equations (30) and (40) can also be integrated 
directly without resorting to the assumption that y 
and i are small. However, iterations are required to 
determine the correct y and II for a given RgB so that 
(30) and (40) are identically satisfied for a given value 
of 8. For the present analysis, (30) and (40) are 
numerically integrated using a fourth-order Runge- 
Kutta technique to start the calculation and a pre- 
dictor<orrector method is used to carry on the cal- 
culation once it has begun. It is found that the velocity 
solutions thus obtained agree with those reported by 

values of A(@, A//J”‘, G and c//8’;’ differ from those 
given by Mellor and Gibson [4] by about + 2%. 

In view of this, as a first guess, the equations (30), 
(31), (40) and (41) are solved using the values 
obtained by Mellor and Gibson [4] for y and /1 for 
the range -0.54 < p < co. Again, the Runge-Kutta/ 
predictor-corrector method is used to perform the 

integration. The logarithmic singularity for f, g, F 

and G at q = 0 (or 5 = 0) is avoided by starting the 
integration at a small value of q (or 0, e.g. 
q = 0.00005. To connect this limiting behavior to the 
physically correct behavior, Ii -+ 0, 0 + 0 as q -+ 0, 
the skin friction and the Stanton number relations 

(20), (29), (38) and (39) are used. A detailed dis- 
cussion of the determination of C (p, Pr,) is given 

below. 

THE MEAN TEMPERATURE PROFILES 

The complete solution for the velocity profiles at _ 
different values of p and R,. = IO5 has been given by 
Mellor and Gibson [4]. In addition, they have 

reported the variations of A, c” and y with b and 
the variation of y with Rd.. In view of this, only the 
calculated mean temperature profiles are presented 
here. Two different sets of temperature profiles for the 

range -0.5 -$ p < crc, are shown; one for Pr, = 0.7 
and another for Pr, = 1.0. The plots for Pr, = 1 .O are 
given in Figs. 1 and 2 while those for Pr, = 0.7 are 
shown in Figs. 3 and 4. From these results, it can be 
seen that. an overlap exists between the inner and outer 
layer and this leads to a logarithmic region for the 
profiles of g’ and G’ for all values of fi except /I + co. 
More will be said about the profile for the /I + cc 
case later. The logarithmic portion of the profile is 
described by 

or 

g’ = - ~;lnrl+&(B,Pr,), (44) 

30 

20 

g' 

10 

0 
.OOOl .OOi .Ol .l 

tl 

FIG. 1. Calculated defect temperature profiles for small 
Mellor and Gibson [4]. However, the determined and Pr, = 1 

B 
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FIG. 7. Calculated dekt temperature protilcs for lay /I and 
Pr, =~ I. 
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FIG. 4. Calculated defect temperature profiles thr large /I and 
PV, = 0.7. 
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Tabfe 1. 
(a) Values of A,, determined at R,. = 10’ for different values of Pr, and p < 1 

Pr, 0.7 0.85 1 2 4 7 

B A Ao 

-0.5 -2.58 15.50 17.20 
-0.4 -2.17 8.48 X.56 
-0.3 -- I.76 5.08 4.44 0.26 - 12.30 -35.70 
-0.15 -.- I .I 7 2.45 I .25 

0 -0.60 0.94 0.21 -0.60 -0.73 -23.90 - 52.80 
0.15 -0.07 -0.09 -1.87 
0.3 0.44 -0.85 -2.81 
0.5 I .08 -1.62 -3.76 - 12.20 -31.80 -64.80 
I 2.55 -2.92 -5.40 - 14.70 - 36.00 -71.30 

-~-- 

(b) Values of A,/p”* determined at R8. = lo5 for different values of Pr, and l/B < 1 
~_.. 

Pr, 0.7 0.85 I 2 4 7 

liP P A/fi"2 

1 I 2.55 -2.92 
0.75 1.33 2.99 - 3.02 
0.5 2 3.59 - 3.06 
0.25 4 4.60 -2.93 
0.1 10 5.77 -2.50 
0.06 16.67 6.33 -2.21 
0.03 33.33 6.98 - 1.82 
0 Cc! 10.27 

1 -,f"/f"(O) or 1 -G’/G’(O) vs 1 -F/F’(O). Selected 
profiles are shown in Figs. 7 and 8 for the Pr, = 1 

20 

-20 

Ae 

-40 

I I , 

FIG. 6. Variations of A0 with Pr, for different values of B. 

AI/P ’ 
___...-_.- 

-5.40 - 14.70 - 36.00 -71.30 
-5.31 
-5.09 
-4.59 -i&SO -23.60 -44.70 
-3.76 -8.16 - 17.60 -32.60 
-3.28 
-2.66 

- 

and Pr, = 0.7 cases, respectively. The behavior of the 
accelerated equilibrium boundary layers is similar to 
those shown by Back and Cuffel[23] ; namely that the 
mean temperature profiles lie below the mean velocity 
profiles at a given distance from the wall. For deceler- 
ated equilibrium boundary layers, the opposite trend 
is observed; that is, at a given distance from the wall, 
the mean temperature profiles lie above the mean 

0.0 0.2 0.4 0.6 0.8 1.0 

1 - r/f(O) or 1 - FW(0) 

FIG. 7. A plot of the mean temperature profiles vs the mean 
velocity profiles for different values of @ and Pr, = 1. 
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0.0 0.2 0.4 0.6 0.8 1.0 

1 f'/f'(O) or 1 -F/F'(O) 

FIG. 8. A plot of the mean temperature profiles vb the mean 
velocity proliles for different values of /I and Pr, : 0.7 

velocity protilcs. As /i increases. the curve becomes 
more and more like an inverted I,. This behavior 
simply reflects the rapid decrease of the mean velocity 
compared to the mean temperature as incipient sep- 
aration is approached. 

The temperature profile c;‘(t) in the limit of /I + 
3c can be determined by examining (41). As /i --+ -x, 
l/j) ---) 0. therefore (41) becomes homogeneous. Since 
the boundary conditions (42c,d) are also homo- 
geneous, the only valid solutions for G(d) and G’(t) 
are that they are zero everywhere. This means that. in 
the limit /j ---t X. 0 = 0, everywhere outside the 
near-wall region and the temperature increase from 0 
to 0, occurs in the thermal sublayer. Therefore. 
A,,jfl’ ’ approaches zero as fi --) x for all values of 

Pr,. Since the present analysis neglects the effects 01 
viscosity by assuming the Reynolds number to be verb 
large, there is no need to specify a Prandtl number. 
Consequently. the thickness of the thermal sublaycr 
cannot be determined and the gradient of 0 at the 

wall is not known. This gives rise to an undetermined 
wall heat flux in the limit of p + 8~. Even though this 
represents a shortcoming in the present analysis. it can 
be easily remedied by including the viscous sublayer in 
the analysis, much like that outlined by Mellor [5]. 

For the case jj = 0 and Pr, = I, the solutions for f 
and y are identical. Since 9’ for the p = 0 cast can be 
rcpresentcd either by (4) or (44), then 

.T,; = A,,+ k!,?ln 

\ 
0 i . 

The dimensionless thermal boundary layer thickness 
(qJ for this case can be determined from the con- 
dition: O(q,,) = 0.990,. This gives Q = 6/A = 0.4. 
Using A,, = -0.6, (46) gives a,, = 1.63. On the other 
hand. if Pr, = 0.85 is assumed in accordance with the 
analysis of Kader and Yaglom [lo], then q,, = 0.4 

again. while .,I,, = 0.21 and A’,, = 2. I I. The approli- 
mate value assumed by Kader and Yaglom [IO] and 
later by Yaglom [I31 is A”,, = 3.35. This is in good 
agreement with the value of ‘j-,, determined from the 
prcscnl analysis. The cffcc: of .-T,, on the calcula~d 

Stanton number is examined In the next section. 
Finally. the dimensionless hear ilux ((,)‘Pi, )<I” and 

(W/‘r,)K for the cabe Prl := I .O xc plotted in I-igh. “1 
and IO. rcspccCve)y. Since the heat liux profiics I’OI 
olhcr values of Pr, are similar 10 Ihosc shown. ihey 
will no! bc prcsertted here. Unlike thy ~hc:u strcsk 
profiles whose maxima mobe away 1’1-om the ~\ait (-1’: /i 

incrcascs [4j. the maxima of the heat flu9 pt-of&+ 
remain at the wall. This i4 a consequcncc of’ Ihc fact 

that the pressure gradient does not have a direct cf?cc~ 
on the temperature field, only an indirect &XI. 
through the interaction of the velocity field. 

THE MODIFIED REYNOLDS ANALOGY 

Near the wall, the f-low is solely tlctcrminetl b) local 
properties and is independent of the frecslrcam con- 
ditions. Consequently. the temperature profile for this 
region is given by the logarithmic law of the wall (1) 
and is independent of the pressure gradient. Far auw> 
from the wall. the defect tempcraturc proMe IS $vcn 
by (44). The existence of an overlap between (1 ) anti 
(44) allows 0, 10. to be dctcrmmcd. ll‘use is ma& oi‘ 
(16) and the definition (29) for .S/. it can he shown 

that 

In obtaining (47). use has been made 01‘ the i&nut! 
I*,A =. l/,ij*. An expression for C‘ can now bc 

obtained by combining (47) with (20). The result is 

For large /I’_ the corresponding expression for C‘ 
becomes 

Values of C’ are calculated for K,,. = IO’ and based on 

K = 0.41. ti,! = rcjPr,. B = 4.9. B,, = 3.X and values of‘ 
/I,Ai/I , ’ ’ A,, and AJ/~’ ’ as tabulated in Table 1. Thq 
are listed in Tables 2(a) and (b) for values of p < i 
and jj >, I, respectively. and are also plotted in Fig. 
I I with C vs jj and Fig. I2 with C vs Pr, to show the 
dependence of C on 11 and Pr,. For accelerated flows, 
the values of C’ are determined to be less than 1 
for the Pr, = I cast. These values arc consistent with 
values of -0.7 to -0.75 mcaburcd at a location out- 
side of the viscous sublayer by Back and Cuffel [1,3, 
241 in an accelerating flow through a convergent 
divergent nozzle. Therefore, the measurements lend 
credence to the present analysis. However. the impor- 
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FIG. 9. Calculated heat flux profiles for small b and Pr, = 1; (a) B < 0, (b) / > 0. 

tant result of the present analysis is the predicted 
trend of C which decreases in accelerated turbulent 
boundary layers and increases in adverse pressure 
gradient flows. 

From Tables 2(a) and (b), it is obvious that C 
changes rapidly as Pr, varies. On the other hand, the 
effect of Pr, on the predicted mean profiles is not as 
clearly illustrated in Figs. 9 and 10. Another way to 
examine this effect more critically is to plot the mean 
temperature vs the mean velocity for different values 
of Pr, at a given value of 8. Since Pr, cannot differ too 
much from 1, these plots should be limited to values 
of Pr, ranging from 0.7 to 2. Three sets of sample 
plots are shown in Figs. 13-15 for B = -0.3,O and 1, 
respectively. In all three pressure gradient cases, the 
effect of Pr, on the profile shape is minimal for Pr, < 1. 
In other words, as far as the calculations of the mean 
profiles are concerned, a slight change in Pr, has little 

effect on their predicted shapes. However, the cal- 
culated C could be off by 10% or more. This suggests 
that a proper choice for Pr, is obtained by matching 
St rather than by matching the mean profiles. 

In the limit p + co, G’(t) goes to zero everywhere 
outside of the near-wall layer. This leads to the dis- 
appearance of the logarithmic behavior in the defect 
profile and hence the overlap with the law of the wall. 
As a result, C cannot be determined for this limiting 
case. However, this does not represent a shortcoming 
of the present analysis. As mentioned previously, the 
wall heat flux cannot be determined in the limit of 
j3 + co because viscous effects are neglected in the 
present formulation. Therefore, St is unknown and C 
cannot be evaluated. A remedy is to include the vis- 
cous sublayer in the formation along the line proposed 
by Mellor [5]. 

It is of interest to note that the classical Reynolds 
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analogy is not exactly correct even for the cast /j = 0 
and Pr, = I (set Tables 2(a) and (b)). Howc~er. as 

fL* --f %’ . C‘+ ^I,, C’+ (l:Pr,) for all values 01‘ /I. 

Therefore, the classical Reynolds analogy is valid only 
in the limit or I’+, + I and R,,* + x 

DISCUSSION 

There are essentially very few data available for 
the validation of (48) and (49) for fmitc \alucs of /i. 

Howmcr. part validation ol (48) COLII~ bc achic~ed 
blf comparing it with data in the literature [X. 9. 25 

27). 
Reynolds (11 trl. [X] and Pcrr) c’t c/l. [9J xtud~d 

heat transfer on a flat plate !/I = 0). They reported 

mcasurcmcnts of both skin friction cocficient and 
Stanton number. If (48) is rc-written in terms or the 
skin friction co&Gent. the cxprcssion fat- the Stanton 
number becomes 
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FIG. 11, Variations of C with p for two values of Pr, 

St = 
(C‘/2) liZ 

---. (50) 
(~C/KB)[(~/C~)“~-A-B]+B~+AO 

Therefore, St can be calculated once C,- is known. 
Taking Pr, = 0.85 as suggested by Kader and Yaglom 
[IO] for flat boundary layers, (50) is used to evaluate 

St based on the calculated Cr. The calculated results 
for C,. are 0.00330 for Reynolds et d’s [8] experiment 
and 0.00300 for Perry et al.‘s [9] experiment. The 
corresponding measured values are 0.00330 and 
0.00300, respectively. As for St, the measured values 
are 0.00190 and 0.00180, respectively, for the exper- 
iments of Reynolds et al. and Perry et al. The cor- 
responding predictions are 0.00191 and 0.00176, 
respectively. According to Perry et al. [9], the accuracy 
of the St measurements is k 7% of the reported value. 
Consequently, it can be said that the calculated values 
are in good agreement with measured data. 

The flat plate boundary-layer data [25-271 have 
been analysed carefully by Kader and Yaglom [IO]. 
They found that the Nusselt number Nu deduced from 
the data correlates well with the equation 

Re,CE’ ’ 

N” = 1.714(2/-m’ 
(51) 

where Pr = 0.7 has been assumed for air. A similar 
expression can be deduced for Nu if use is made of 
(20), (29) and (48). The result, after the constant 
values of A = -0.6, B = 4.9, BI, = 3.8 and A,, = 0.21 

have been substituted, is 

Nu = 
Re,C,” ’ ..~~~ (52) 

2.02Pr,(2/C,)-8.688Pr, +8.093. 

Again Pr = 0.7 is assumed for air. It can be seen that 
if Pr, = 0.85 is used, 2.02Pr, takes on a value of 1.717, 
which is about the same as that given in (51). 

However, (8.093-8.688PrJ = 0.708, which is not 
equal to that given in (51). A plot of (51) and (52) is 
shown in Fig. 16. The close agreement between the 
two expressions lends credence to the present analysis. 
It should be pointed out that A,, and B. are parametric 
in Pr. Therefore, (52) is also valid for other values of 
Pr much like the empirical expression (51) derived by 

Kader and Yaglom [lo]. 
The DNS data reported by Kim and Moin [16], by 

Kasagi et al. [ 171 and by Kasagi and Ohtsubo [ 181 are 
for a bulk Reynolds number less than 6600. Therefore, 

viscous effects are important and cannot be neglected. 
In view of this, it is not appropriate to compare the 
present analysis with the DNS data. However, the 
DNS results are found to agree well with the empirical 
mean temperature profiles of Kadar [28] at about the 
same Reynolds number. Since Kader’s [28] empirical 
results and the present results are in good agreement 
with the similarity analysis of Yaglom [13], it can 
be inferred that the present results are also in good 
agreement with DNS data at the same Reynolds 
number. 

Finally, it should be noted that the present analysis 
is applicable to turbulent flow with wall mass transfer 
under equilibrium conditions. This follows directly 
from equation (7) which is also valid for mass transfer 
problems provided 0 is interpreted to denote the mix- 

FIG. 12. Variations of C with Pr, for different values of B. 
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0.2 0.4 0.6 0.8 1.0 

1 - f/r(o) 

FIG. 13. A plot of the mean temperature profiles vs the mean 
velocity profiles for different values of Pr, and [i = - 0.3. 

LO 0.2 0.4 0.6 0.8 1.0 

1 - f/f’(O) 

FIG. 14. A plot of the mean temperature profiles vs the mean 
velocity profiles for diKerent values of Pr, and jr = 0. 

ture mass fraction. Furthermore, the mixture mass 
fraction can be no~alised to zero at the wall and 
unity in the free stream. Under these conditions. (ikl 
represents the mass flux at the wall and the governing 
equations and boundary conditions are identical to 
the heat transfer problem treated here. 

CONCLUSIONS 

Incompressible, ~qu~iibrilirn turbuie~t thermal 
boundary layers. characterised by [3 = constant. have 
been analysed. A family of defect temperature profiles 
parametric in both [j and Pr, has been obtained for 
the permissible range, -0.54 < /3 < co ; corresponding 
to turbulent boundary layers with a f’avorabfe pressure 
gradient beyond which no equii~brium Aow exists and 
turbulent flows at incipient separation, respectively. 

0.0 I!f!!!C @’ a 

7 

_-. 

0.0 0.2 0.4 0.6 0.8 ? a 

1 . fw(O) 

FIG. IS. A plot of the mean temperatwc profiles vs the mean 
velocity profiles for different values of I+, and [< - I 

From these results, a modified Kcynolds analogy 
defining rhe relation between St and C’, has been 
deduced. The proportionality constant c‘ thus 
deduced is shown to be parametric in both fi and 
PI,. For a given Pr,, c‘ decreases as J decreases and 
increases when the pressure gradient becomes increas- 
ingly adverse. On the other hand, when [L is kept 
constant, c’ decreases with increasing Pr,. Thcsc 
trends are true for all values of /j and PI, examined. 
The present results lead to the conclusion that the 
classical Reynolds analogy is correct onty in the limit 
of fi = 0, Pr, -+ 1 and R,, -+ ,X . 11 is further shown 
that the Stanton and Nusselt numbers thus deduced 
are in good agreement with measured data obtained 
in air. Finally, it is pointed out that the present analy 
sis can be used to study equ~libriun~ turbulent fiows 
with mass transfer at the wall. 
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