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Abstract—The effects of pressure gradient on turbulent heat transfer to or from planar surfaces are
examined. Only incompressible, equilibrium thermal boundary layers are investigated. The equilibrium
condition is characterised by the Clauser parameter f. Temperature profiles which are parametric in § and
the turbulent Prandtl number, Pr,, have been calculated for the range —0.54 < § < co; corresponding in
one end to a favorable pressure gradient flow beyond which no equilibrium boundary layer is possible and
in the other end to turbulent flow at incipient separation, respectively. It is found that an overlap exists
between the temperature law of the wall region and the outer defect law region for all values of f§ and Pr,,
except when § — oc. The existence of this overlap region gives rise to an expression for the Stanton number
which is shown to be a function of # and Pr. At incipient separation, the skin friction coefficient goes to
zero while the wall heat flux remains finite. However, the wall heat flux and the Stanton number in this
limit cannot be determined because of the neglect of viscous effects in the present analysis. A modified
Reynolds analogy that accounts for the effects of § and Pr, is deduced and the classical Reynolds analogy
is shown to be valid only in the limit of § goes to zero, Pr, goes to | and the Reynolds number based on

the displacement thickness approaches infinity.

INTRODUCTION

THE sTUDY of isothermal, incompressible, equilibrium
turbulent boundary layers on plane surfaces was first
attempted by Clauser [1]. He pointed out that equi-
librium boundary-layer flows can be established if the
parameter fi = *(dP/dx)z,, is maintained constant
throughout the flow. Here, dP/dx is the streamwise
pressure gradient. Clauser also showed that the outer
boundary layer can be analysed by assuming an eddy
viscosity Ky such that Ky oc U, 8% The work of
Clauser was later extended by Townsend {2, 3]. How-
ever, the problem was being analysed in a piecemeal
fashion and the theories proposed involved a consider-
able amount of approximations and empiricism.

A rather complete analysis of isothermal, incom-
pressible, equilibrium turbulent boundary layers on
plane surfaces was later given by Mellor and Gibson
[4]. They based their study on the well-known two-
layer model for turbulent boundary layers and a
derived eddy viscosity function that is valid in the
entire region outside of the viscous sublayer. The
extension of the eddy viscosity function to include
viscous cffects was given by Mellor [5] in a companion
paper. In their analysis, Mellor and Gibson [4]
invoked basic physical assumptions similar to those
made by Townsend [2, 3]; however, the empirical
information required was limited to that extracted
from zero pressure-gradient flow only. Consequently,
the theory is on stronger theoretical ground. Besides,
Mellor and Gibson [4] demonstrated that the incipient
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separation profile of Stratford [6], where 7, ~ 0, was
also a member of the family of equilibrium profiles
obtained with § held constant. Subsequent measure-
ments of boundary layers with zero, negative and
positive pressure gradients by Kline ez o/, [7] provided
further evidence to support Mellor and Gibson’s [4]
analysis. Their measurements showed that an overlap
region indeed exists ; thus giving rise to a logarithmic
law of the wall and verifying the validity of the skin
friction coefficient determined from the log law.
Therefore, Mellor and Gibson’s [4] analysis of the
equilibrium layers was by far the most thorough and
complete to date.

On the other hand, thermal equilibrium turbulent
boundary layers have received scant attention. The
most studied case is the thermal boundary layer
developed on a flat plate with zero pressure gradient
(6 = 0) and constant freestream and wall tempera-
tures. Some careful measurements by Reynolds et al.
[8] and Perry et al. [9] showed that the temperature
profiles are quite similar to the velocity profiles and,
therefore, can be described by the two-layer model
commonly used to analyse velocity layers. Near the
wall, the temperature is determined by the fluid prop-
erties, such as density p, kinematic viscosity v, thermal
conductivity &, specific heat at constant pressure C,,
and the wall variables given by wall shear stress T,
wall heat flux ¢, and the normal coordinate y mea-
sured from the wall. Dimensional arguments then lead
to the temperature law of the wall,



R.M. (.50

Strictly speaking, the arguments leading to (1) are
valid only

NOMENCLATURE
A constant in the velocity defeet Law. R.-(0)  Reynolds number evaluated at v = 0,
defined in equation (19) U, (0s*(0)/y
A, constant in the temperature defect faw. . . i
defincd in equation (42) St Stanton number. JCU @
A, constant in the temperature defect law, # fluctuating velocity a‘hmg the v-direction
defined i cquation (4) u, skin friction veloeity, (1, 1
B constant in the velocity law of the wall. w,  pressure velocity, (0% (dP/dx)ip)’ B
defined in cquation (18) L mean velocity along y-dircction
B, constantin the temperature law of the wall. (", [reestream velocity
defined in equation (2) v fluctuating velocity along v-dircction
¢ coefficient of Reynolds analogy. defined in o mean velocity along p-direction
equation (28) AN stream coordinate
'y constant defined in cquation (49) A
(', skin [riction coefficient. 27, /pU" X normalized x coordinate, ”'(/(7) dx
C,  specific heat at constant pressure v normal coordinate. o
e root of equation given by combining (174}
. and “?b) . . .. Greck symbols
E  voot of the cquation given by combining Clauser parameter. 8% (d Prd) it '
(d1a) and (41b) I Ufmsis'x p-ammuitu.rf) {dP¢ .\),‘HV ’
. . . . L . » skin friction defined for small p.ow, /L
f dimensionless velocity defect function . ) - L N
N . O boundary layer thickness
defined lor small f T . ,
£ dimensionjess velocity defect function 5% displacement thickness. ! v, - v dr
defined for large f# g U )
I dimensionless temperature defect function . . S i hi
defined for small A defect thickness. ’ . dy =
G dimcnsiqnicss temperature defect function i dimensionless 1 C?i;!l‘diﬂ;ik‘., A ‘
defined for large f# o N i, dimensionless thermal boundary laver
G defect shape factor. j ({ b ) d‘\ mxcknes.'s
o \ow A ¢  Buctuating temperature
h channel half width ®  mean temperature difference between the
k thermal conductivity fluid and the wall
. vl ®.  [riction temperature. -~ ¢, pCou, j
K acceleration parameter, v ®, pressure temperature, /0,
K. constant in the definition of the outer-layer ©, freestream temperature ,
eddy viscosity. 0.016 n von Karman constant for the velocity faw ,
K, thermal eddy diffusivity of the wall, 0.41 :
Ky eddy viscosity x.  von Karman constant for the temperature |
faw of the wall '
m  dimensionless parameter, A/Uh 4 skin friction defined for large f. " |
Nu  Nussclt number, St Pr Re, ’ v fluid kinemglic \r’?SCOSil}’ »
P mean pressure : slrgtchcd Q1mcnsx<111]cs< v eoordinate
Pr Prandt] number ¢ fluid density
Pr, turbulent Prandtl number 7 total shear stress
g total heat flux T W,"l“ sh%‘ar Stress ) o )
4o wall heat flux @ dm?ens@ﬁcss eddy viscosity function
Re,  Reynolds number based on the stream df:hncd'lor small f o
coordinate, U, xiv Py dm}cnsz{?nicss eddy thermal diffusivity
R, Reynolds number based on the d.cﬁncd.ior small f. P Pr, o .
displacement thickness, U, 9%/ g dm\]cnsmnless eddy viscosity function
defined for large fi.
< /i‘l(‘“{ﬂ P/) H turbulence, the freestream temperature @, is small
e Ay enough for the flow to be considered incompressible

and the variations of fluid propertics across the layer

for fow cases where there is no {reestream

are small. If. in addition, the flow is assumed to have
a constant flux region ncar the walll the temperature
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profile outside the viscous sublayer can be shown to
be described by the logarithmic law of the wall,

(] 1 Vi,
é: = ;;Hln < " >+Bg (2)

The value for i, could be determined through classical
mixing length arguments and by assuming the thermal
eddy diffusivity K, to be given by Ky = Ky/Pr..
Therefore, according to Kader and Yaglom [10], k,
can be shown to relate to the von Karman constant x
by &, = x/Pr.. In general, B, is a function of Pr. For
air, Kader and Yaglom [10] showed that B, = 3.8
correlates well with flat-plate boundary layers and
pipe flow heat transfer data they have examined.
Besides, measurements in square duct by Brundrett
and Burroughs [11] and the flat-plate boundary-layer
experiment of Perry and Hoffmann [12] also lend sup-
port to (2) with B, = 3.8. As a result, the temperature
law of the wall can be taken to be given by (2) with
K, = k/Pr.and B, = 3.8 for air.

Far away from the wall in the fully turbulent region,
the temperature is nearly independent of the molec-
ular diffusivities. However, it is affected by the boun-
dary layer thickness, d, and the freestream tempera-
ture, @,.. Dimensional arguments again lead to

6,-0 ¥
%e2=n(3) ®
If an overlap region exists, it can be easily shown that
[10]
0,-0 _ 1 v -~

Kader and Yaglom [10] found that A, is different for
flows in pipes, channels and boundary layers. For pipe
flow, according to the data examined by Kader and
Yaglom [10], 4, ~ 0 is found to give a good cor-
relation between (4) and the measurements. However,
for flat plate boundary layers, Kader and Yaglom [10]
could not find any reliable data to determine A,
with sufficient accuracy. Nevertheless, they assumed
A, = 2.35 based on the argument that K;, = Ky, in the
outer region and that the dimensionless velocity and
temperature profiles in this region have the same
shape. If these dimensionless profiles are indeed simi-
lar, then according to the analysis of Mellor and
Gibson [4], 4, = 1.6. Therefore, in spite of the de-
tailed study of Kader and Yaglom [10] and Yaglom
[13], the correct value of 4, even for flat plate bound-
ary layers, is not known. Besides, the assumption of
Ky, = Ky in the outer region is not quite correct. The
data examined by Kader and Yaglom [10] and
Yaglom [13] suggest a value of K;; = K,,/0.85.

For flat plate boundary layers, the mean momen-
tum and temperature equations are similar. In
addition, the boundary conditions for U and © are
identical ; that is, U and ® go to zero at the wall and
approach their free stream values U, and ®, at the

edge of the boundary layer. If K,; = Ky is assumed,
the equations become identical and the same solution
for velocity and temperature is obtained. This suggests
that 4, &~ 1.6, the same as that determined from the
isothermal study of Mellor and Gibson [4]. In general,
Ky is not equal to Ky ; therefore, a study of the
equilibrium thermal boundary layer in a manner
similar to that proposed by Mellor and Gibson [4] is
suggested. This analysis could also be used to assess
the effects of pressure gradient on heat transfer and
the validity of the Reynolds analogy. However, it will
be limited to cases where the aerodynamic and thermal
boundary layers are in equilibrium.

Measurements on heat transfer in flows with
streamwise pressure gradient are scarce [9, 13] and are
essentially non-existent for situations where f§ = con-
stant. Some measurements [14, 15] with accelerating
external flow were available and a limited amount of
decelerated flow data were also included in ref. [14].
However, the boundary layers investigated in these
studies were not in equilibrium. The reason being that
the acceleration parameter K specified in these studies
was larger than the minimum f where equilibrium
boundary layers exist [4]. For example, the smallest
K specified in the study of Moretti and Kays [14] is
K~ 0.3x 107 % However, according to Mellor and
Gibson [4], the smallest value of § where equilibrium
accelerated boundary layers existis f = —0.54. [t can
be shown that K and f are related by the expression:
K = —fy*/R;. Therefore, if § = —0.54 is assumed, 7
is taken to be 0.035 at a R, =~ 10* investigated by
Moretti and Kays [14], K is estimated to be 0.7 x 107
which is smaller than K ~ 0.3 x 10~ °. Other values of
K investigated [14, 15] were much larger than
0.3x 107 °; therefore, the boundary layers studied
were not in equilibrium. On the other hand, f§ for
a fully-developed channel flow can be expressed as
(—0*/h). Since 6*/h is most likely less than 0.54, fully-
developed turbulent channel flow is an equilibrium
flow. Therefore, recent data on direct numerical simu-
lation (DNS) of fully-developed turbulent channel
flow with heat transfer [16-18] can also be considered
as viable data sets besides the measurements of Perry
et al. [9] and Yaglom [13].

In view of the present state of knowledge of thermal
equilibrium boundary layers, an analytical study of
such flows is warranted. Therefore, the present objec-
tives can be stated as follows. The first objective is
to investigate the family of equilibrium temperature
profiles and determine their dependence on the param-
eters f and Pr,. A second objective is to evaluate the
correct value of A, for flat plate boundary-layer flows
and the parametric variations of 4,(f, Pr,). Finally,
the third objective is to study the validity and extent
of the classical Reynolds analogy and formulate, if
possible, a more general Reynolds analogy that
depends on f and Pr,. This general Reynolds analogy
should approach correctly the classical Reynolds
analogy in the limit of f goes to zero and Pr, goes
to 1.
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FORMULATION

The flow under investigation 1s assumed to be two-
dimensional and incompressible and @ is considercd
small. Furthermore, frecstream turbulence is assumed
to be negligible. Under these assumptions. the govern-
ing cquations arc equally applicable for cooled or
heated wall thermal boundary condition. Therefore,
in the following analysis, no distinction will be made
between these two cases. Only cquilibrivm flows
characterised by the paramcter ff = constant over
smooth plane walls at constant temperature are ana-
lysed. Although the freestream velocity is allowed to
vary. only flows with constant frecstream temperature

are considered. The analysis follows closely that of

Mcllor and Gibson [4]. Therelore, the governing
equations for boundary-layer lows with heat transfer
can be written as:

cto o .
Lo+ =0 (3
cx o v
ol ol 1dP ¢t
v T ) (6)
X 5 pdy o dr\p,

O Oy
N -:.q( )
AN cro o \p(,

The Boussinesq definition ol an cddy diffusivity is
adopted. so that

T ct/ U
=0 . —ur=Ky- . (8)
Iy cy oy
- k 0 (O
A N g (9)

pC, - pC, Oy

v

For boundary-layer flows. dP/dy is given by the
Bernoulli equation applied to the freestream. In other
words, — (HpHdPidx) = U, (dU,/dx). Finally. the
boundary conditions can be conveniently stated as
follows:

Fix,0) = &(x.0) =0, (10a)
U T,

tim KM((; >z . (10b)
] OV I

. RC] — Cf e

!{r.n“ K”(é_y) = DCP . (10¢)

s
j [, —Ulva]dy = 0% U, (x). (10d)
i}

Olx.y 1) =0, (10¢)

Equations (10b.c) replace the usuul no-slip conditions
al the wall and simply state that the shear stress and
heat flux must approach the wall shear stress and wall
heat flux correctly as 1 goes to zero. Equation (10d)
is chosen as the outer boundary condition instead
of the conventional U(x,y - ) = U, (x) because it
requires the displacement thickness (and hence the
momentum thickness) to be finite.

The cquation set (5)—-(10) can be closed by post-
wlating diffusivity functions for Ky and K. In this
study, Ky = K/ Pr s assumed and Pris taken 1o be
constant; therefore, only an eddy viscosity function
for Ky ts required. The assumption of a constant P,
is supported by the measurements of Hishida er o/,
[19] and by the DNS data of Kim and Moin [16].
Kasagi et af. [17} and Kasagi and Ohtsubo [18]. In all
these studies. Pr, is found to be fairly constant in the
fully turbulent region and 1ts value varies from about
1 near the wall to approximately 0.8 ncar the pipe or
channcl centerline. In view of this. the constant Pr,
assumption represenis a reasonable first attompt o
analyse thermal equilibrium turbulent boundary tuyers.

Following Mellor and Gibson [4], a wo-laya
model with an overlap Tor the yvelocity profile is
adopted. The eddy viscosity function thus proposcd
is given by

B i ‘if{ | .
Ky= w0 (Hy
pev
for the inner layer, and
Ky = K. o%U (i

for the outer layer. Together, {11) and {12} give a
continuous function for K. The dividing point
between the inner and outer layer can be taken to be
the larger of the two positive roots given by the solu-
tion of the cquation obtained by cquating (11) und
(12). A value of K¢ = 0.016 was found by Mellor und
Gibson 4] to give the best overall agreement with
numerous flat plate boundary-layer data they have
cxamined.

Inherent in the analysis of Mcllor and Gibson [4] is
the assumption of constant shear stress in the viscous
sublaver., This assumption allows the wall boundary
condition (10b) to be specified and the eddy viscosity
function (11) to be adopted for the analysis of the
inner layer without having o account for viscous
cffects. In other words, their formulation neglects the
viscous sublayer by bridging the fully turbulent region
1o the wall through a constant stress layer. Mcllor
and Gibson [4] found that their approach gave fairly
accurate results as long as the flow Reynolds number
is sufficiently large. Experimental evidence in support
of such an assumption can be gleaned from the
measurements of Kline er &l [7]. where a constant
stress layer was shown 1o exist for boundary layers
in zero, negalive and positive pressure gradients. A
detailed consideration of the viscous sublayer and a
comparative cxamination of the various cddy vis-
cosity functions suitable for its analysis has been given
by Mellor [5]. The present analysis adopts the
approuch of Mellor and Gibson [4] and Jurther
assumes that the heat flux is also constant in the vis-
cous sublayer, Therefore, this additional assumption
allows the thermal boundary condition (10c¢) to be
specified consistent with the boundary condition {10b}
for the velocity field. Besides having to imit the analy-
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sis to high-Reynolds-number flows, one major advan-
tage of the neglect of viscous effects is that there is no
need to determine the relative thickness of the velocity
sublayer and the thermal sublayer. In other words,
the analysis can be carried out by simply assuming
that the shear stress and heat flux are constant across
a region defined by the larger of the velocity sublayer
and the thermal sublayer depending on the thermal
boundary conditions.

THE DIMENSIONLESS VELOCITY AND
TEMPERATURE PROFILES

Defect solutions of the form

Uu,-U

; 2=0
“ -=f"(n), ) =g'(n),

(13a,b)

are sought for the mean velocity and mean tem-

perature profiles. With these definitions for U and ®

and the assumption of a constant turbulent Prandtl

number, the following expressions can be deduced for

the shear stress and the heat flux. They are
S = UL (4
p s o\ s

—4 ssu.0. (2
—_— = — § . _g” ,
pC 10 x(Prl )

p

(15)

where the primes applied to f and g denote differ-
entiation with respect to n and the Stanton number
St is defined as

— 4w ur®r
St = = WO
pC,U,0,  U,0.,

(16)

The dimensionless eddy viscosity is defined by
@(n) = Ky /o*U,, while the corresponding thermal
eddy diffusivity is given by ¢u(n) = Ku/6*U,, =
@(n)/Pr,. Thus defined, @() can be written in terms
of f by making use of (11), (12) and (13a) and the
results are

o(m) =k’ f"];
o) = K¢;

where e is given by the larger of the two positive roots
of the equation k*p?| "] = Kc.

According to Mellor and Gibson [4], the velocity
profile away from the viscous sublayer can be
described by a two-layer model; namely, the log-
arithmic law of the wall,

n<e, (17a)

n=e, (17b)

U 1
2= ¥ B (8)
u, K v
and the defect law
UenU_ L pta 19
= = It A(p), (19

T

where k = 0.41 and B = 4.9 are found to correlate well
with data, and A4 () is parametric in f. The existence of

an overlap between these two regions results in a skin
friction equation given by

1 2N? 16U
-=|=] =-1 ¥ LB+ A4
" (G) PR +B+A(p),
where 6*U,, = Au, has been substituted into (20).

Furthermore, (19) and the von Karman integral equa-
tion can be used to derive the following relations

@0

YU, yik (AU,
=— = 1
YU, 1+y/k (AU; +1) @b
1 AU, 7\ B '+249G
=2y =1 ) T
N ( +K>l—yG+yZGK“
(22)

The range of § in which equilibrium boundary layers
exist and the particular U(x) and A(x) distributions
implied by a constant § have also been examined by
Mellor and Gibson [4]. For the sake of completeness,
these relations are quoted here ; the interested reader
should consult Mellor and Gibson [4] for details in
their derivation. Equilibrium turbulent boundary layers
are found to exist when the distributions of U(x) and
A(x) satisfy the following relations:

v, [, pro =T
UJO)‘[ Tm a‘*@] @)
A @ | U, |
A(0) ~ y6*(0) [Uw(O)] ' @)

With these distributions, the range of § in which equi-
librium flow exists can be determined for a given
Reynolds number. Mellor and Gibson [4] evaluated
the range for R;.(0) = 10°. They found that m is
bounded by the range —0.23 < m < —1. The two
limits correspond to = oo and f = —0.54, respec-
tively, and the physical meaning of these limits is that
B = oo represents a flow at incipient separation while
p = —0.54 represents the lower limit beyond which
no equilibrium flow exists. It can be seen that the
lower limit leads to the condition AU, = constant, or
the defect thickness decreases inversely as the free-
stream velocity in an accelerated flow.

With these simplifications, (6) and (7) can be
reduced to two third-order ordinary differential equa-
tions for f and g. The equations and the associated
boundary conditions are:

" 1
(of") _ﬂ<m+1>

x [ﬂf”—yff”+ i

F O ”—vf’z)J
+BQf =) =0,

(1
(P%g’) —ﬂ(m + 1>[ng” -9

(fusr
+ IT;,C {(i St, - 1)(9’—vf ’g’)+vfg”}] =0, (26

25




TRANSFORMATION FOR LARGE /i

It is clear that as § — oc or 7, — 0 (flow at incipient
separation), the solutions for /" and ¢” would increase
indefinitely. Furthermore, the approximate value of 1

32 R.M.C. So
J(0) =0, L., =1 lof 1m0 = — 1.
(27a.b,c)
9(0) =0, [g'(m)],—., =0, [og"), o= — L
(28a,b.c)

where the primes in 7, U, . A and St denote differ-
entiation with respect to x.

The classical Reynolds analogy {20} for flat plate
turbulent boundary layers with K, = K, assumed can
be stated as St = 3. However, from flat plate boun-
dary-layer data examined by Kader and Yaglom [10],
it appears that Ky = Ky/Pr, with Pr, = 0.85 gives the
best overall correlation between (1) and (2) and the
measurcments. Therefore, St = 77 is not quite valid,
and it follows that the classical Reynolds analogy
would not be suitable for heat transfer analysis with
pressure gradient effects. For these flows. a general
Reynolds analogy given by

= C(f, Pr)y (29)
where C is taken to be parametric in f and Pr,, could
be proposed. Evidence in support of this proposal
can be found in the stratified flow measurements of
Businger e7 al. {21] in the atmosphere and those of
Arya [22] in a wind tunnel. These data were obtained
in a zero pressure gradient environment. Howcver,
there 1s an additional body force acting on the flow
due to buoyancy effects. As a result, Arya [22] showed
that C depends on the bulk Richardson number,
which is a dimensionless parameter characterising
buoyancy effects.

Substituting (29) into (25) and (26) and integrating
the equations once gives rise to two second-order ordi-
nary differential equations for f and g. In writing
down these equations, boundary conditions (27¢) and
(28¢) have been used to evaluate the integration con-
stants. The final equations are

o)
Ao o]

r N

7 J‘\_/"zdn/‘) =L

¢ o o 1o N [ )f

Pi\g v ) L 11}]/'\_)9A (1 o)
T

+3 (1+ )J £y dn

and the remaining boundary conditions arc given by
(27a,b) and (28a.b). These equations are parametric
iny, f and Pr,; therefore, they can be solved once the
parameters are specified.

+8{ 2~ (30)

— 1L (3

marking the edge of the boundary layer decreases as
/8 increases. Numerically, this latter behavior is very
undesirable. If the equations arc 1o be solved properly.
these singular behaviors have to be dealt with. Mellor
and Gibson {4] suggested transforming the equations
by re-defining a new dimensionless coordinate so that
as ff — o the new coordinate will also approach infinity.
Consequently, the following transformation was pro-
posed : namely

=< {32)
Ty = K&, gy = U, (33ub)
p=ApN 0 Gipt = FPdE (33ed)

The physical interpretation of this transformation 1s
that it leads to the definition of a ‘pressure velocity'.
u, = [0% (dPidx)/p]"2 which is finite. Tt follows that
the definition of F” is given by

and (33c) leads to 4 = u,/U/, which is also finite.

If the transformed temperature profile G'(¢) is 10
remain finite as f — ., a suitable definition for G (&)
will be

(35)

This requires @, to be finite as ff — . From (16) and
(27), it can be shown that @, = (7O, . Therefore. if
Q, is defined as

0, =10, (36)

it will remain finite as ff — o« . This suggests the fol-
lowing transformation for g{(#)

gm =G, gy =p'"7G &), (37ab)
0, u, i

P P 37¢)

0. / (37¢)

The expressions for 1 and St can now be written as

! 1 U, o* B A

AV IE S R
¢

St = 39)
p

With the substitution of the transformations (32),
(33) and (37), equations (30). (31) and the associated
boundary conditions can be written as
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. 1 , 1
o3 +1)| e~ )
) 1 , 1—Aijxpl? "
"‘(1’%7/7/1“)" ”(TH/xﬂ'”)LF di]

1
+2F—,1J F2dE = — -
0

40
ﬁ,()

® e (L
Pr” T\t
G L o—il—— Vre
o e N TP el S Ny

N Y e B |
(g o= e

F(0) =0, F(l—-w0)=1, (42a,b)

G(0) =0, G'(¢—- ) =0, (42c,d)

where the eddy viscosity function ¢(¢) is defined by
(&) = w?E|F,
O(f) = Ko,

6<E5
¢ E,

(43a)
(43b)

and E is again given by the larger of the two positive
roots of the equation x%¢?|F”| = K. Therefore, it can
be seen that the equations are regular as § — o and
they can be solved subject to boundary conditions
(42) using conventional numerical techniques.

METHOD OF SOLUTION

Mellor and Gibson [4] suggested solving (30)
and (40) by expanding f and F in terms of y
and 1, respectively, so that f= f,+7f,+0(y% and
F = Fo+AF,+0(1?. Implicit in these expansions is
the assumption that y and A are small. As a result, the
equations for f,, f1, Fy, F), . .. were parametric only
in f§ and were solved using a Runge—-Kutta technique
for a given . Therefore, for a given R;., the velocity
profiles can be calculated for any value of . Mellor
and Gibson [4] calculated the velocity profiles for the
range —0.54 < < oo at a R, = 10 For ease of
comparison, the present calculations are also carried
out for the same range of f§ and R,..

The equations (30) and (40) can also be integrated
directly without resorting to the assumption that y
and 4 are small. However, iterations are required to
determine the correct y and A for a given R;. so that
(30) and (40) are identically satisfied for a given value
of f. For the present analysis, (30) and (40) are
numerically integrated using a fourth-order Runge—
Kutta technique to start the calculation and a pre-
dictor—corrector method is used to carry on the cal-
culation once it has begun. It is found that the velocity
solutions thus obtained agree with those reported by
Mellor and Gibson [4]. However, the determined

values of A(B), 4/8"7, G and G/B'7* differ from those
given by Mellor and Gibson [4] by about +2%.

In view of this, as a first guess, the equations (30),
(31), (40) and (41) are solved using the values
obtained by Mellor and Gibson [4] for y and A for
the range —0.54 < f < 0. Again, the Runge-Kutta/
predictor—corrector method is used to perform the
integration. The logarithmic singularity for f, g, F
and G at 4 =0 (or £ = 0) is avoided by starting the
integration at a small value of 5 (or &), e.g.
n = 0.00005. To connect this limiting behavior to the
physically correct behavior, U—0, ® -0 as n - 0,
the skin friction and the Stanton number relations
(20), (29), (38) and (39) are used. A detailed dis-
cussion of the determination of C (f, Pr,) is given
below.

THE MEAN TEMPERATURE PROFILES

The complete solution for the velocity profiles at _
different values of § and R,. = 10° has been given by
Mellor and Gibson [4]. In addition, they have
reported the variations of A4, G and y with § and
the variation of y with Rs. In view of this, only the
calculated mean temperature profiles are presented
here. Two different sets of temperature profiles for the
range —0.5 < B < oo are shown; one for Pr,=0.7
and another for Pr, = 1.0. The plots for Pr, = 1.0 are
given in Figs. 1 and 2 while those for Pr, = 0.7 are
shown in Figs. 3 and 4. From these results, it can be
seen that an overlap exists between the inner and outer
layer and this leads to a logarithmic region for the
profiles of ¢" and G’ for all values of § except § — c0.
More will be said about the profile for the f—
case later. The logarithmic portion of the profile is
described by

1
g = — ~lon+Ayp. Pr), (“4)
(4
or
g
n
FI1G. 1. Calculated defect temperature profiles for small §
and Pr, = 1.



20

F16. 2. Calculated defect temperature profiles for large ff and

30[

20 E\k

Fi6. 3. Calculated defect temperature profiles for small g

15

(&)

Q

0 1
.0001 .001 .01 A

R. M. (. So

15
\.\ 15"

\\' \ \.
o0 \ “\\\
v\v\v \,\T\Q:\

Pr = 1.

and Pr, = 0.7.

Vg, 0.1

o 0,067 AN
SUNTY TN,

——. e ",
] N::\“S:E&,\‘h

.0001 .001 .01 A 1

F1G. 4. Calculated defect temperature profiles for large ff and

Pro=0.7.

, l Sy AP
G il T e
SV ~'“(\ﬁ‘ AN

The slope of the logarithmic region shown in Figs. |
4 can now be determined. Values thus obtained for «
are 0.410 and 0.586 for the cases with Pr, = 1 and 0.7,
respectively. and show that the relation o, = 1 P i
indeed valid.

Values of A, and A,/ B determined from these
plots arc tabulated in Tables 1{a} und (b). respectively.
together with the values of 4 which agree to within
+ 2% ol those given by Mellor and Gibson [4]. In
Tables 1{a) and (b), the values of A, and A,/ S for
selected values of ffand for Pr, = 0.85. 2. 4 and 7 arv
also listed. A plot of 4, and vs i for twao
different valdues of Prois given in Fig. 5. while a plo

(43)

1.2
N

of A, vs Pr. lor several values of f is shown n
Fig. 0. The dashed lines shown in Fig. 5 represent

the extrapolation of A, A"
1

to 7ero as fi = 7 tor
I ). These results clearly show the dependence
of A, on fand Pr.

[t should be noted that (30) and (31) arc identical
equations for the case ff = 0 and Pr, = 1. The boun-
dary conditions for both cquations ure the same
because (27b) 1s equivalent to the condition /iy
sy = ). Therefore. the solutions for f and g ure
identical. This tact led Back and Cuflcl [23] 1o plot
their mean velocity and mean temperature profiles in
the form of @/0, vs U- L7, for accelerated boundary
layers. Thus. any deviation of the profile from the
straight line behavior will be clearly illustrated. The
effects of negative and positive pressure gradient on
boundary-laver flows can again be illustrated by plot-
ting 'O vs (U, . In the present nomenclature.

they arc cquivalent to ploding |- g gt0) v

20

FiG. 5. Variations of 4, and 4,/f3' ~ with § for two values ol
Pr,.
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Table 1.
(a) Values of 4, determined at R, = 10° for different values of Pr,and f < 1
Pr, 0.7 085 1 2 4 7
B A Ay
-0.5 -2.58 15.50 17.20
—-0.4 -2.17 8.48 8.56
—-0.3 - 1,76 5.08 4.44 0.26 —1230 —3570
—0.15 —1.17 2.45 1.25
0 -~ (.60 094 021 -060 -0.73 2350 —52.80
Q.15 -0.07 —0.09 —1.87
0.3 0.44 —0.85 —2.81
0.5 .08 —1.62 —376 —12.20 -—31.80 —64.80
i 2.55 —2.92 —540 1470 -—3600 —71.30

(b) Values of 4,/p'"* determined at R, = 10° for different values of Pr, and 1/8 < 1

Pr, 0.7 0.85 [ 2 4 7
1ip B Alp" Aol
I 1 2.55 —292 ~540 —1470 3600 —71.30
0.75 1.33 2.99 -3.02 —-35.31
0.5 2 3.59 —3.06 —5.09
0.25 4 4.60 —293 -4.59 1050 —23.60 —44.70
0.1 HY 5.77 —2.50 —3.76 —-816 —1760 3260
0.06 16.67 6.33 —-2.21 —3.28
0.03 33.33 6.98 —1.82 —~2.66
0 By 10.27

and Pr, = 0.7 cases, respectively. The behavior of the
accelerated equilibrium boundary layers is similar to
those shown by Back and Cuffel [23] ; namely that the
mean temperature profiles lie below the mean velocity

1—£7/f(0) or 1—-G’/G'(0) vs 1 —F'/F'(0). Selected
profiles are shown in Figs. 7 and 8 for the Pr, =1

20 T T T profiles at a given distance from the wall. For deceler-
ated equilibrium boundary layers, the opposite trend
is observed ; that is, at a given distance from the wall,

o | . the mean temperature profiles lie above the mean

20 L =3 1.0 Q/V/r—""

— fi
B . v/‘// /A/
A S
; T
-0 L -0.3 = 75 ]
0 W S
o Y4 PO
0 ’ 03, i
- / / Ve
50 L -~ ° / / 05 S g
o5 S e
1 s -
80 | - T
4
-100 L ~
. . ' 1o 0.4 06 0.8 1.0
0 2 4 6 8 1-1/£(0} or 1-F/F(0)
Prt

FiG. 7. A plot of the mean temperature profiles vs the mean

FiG. 6. Variations of 4, with Pr, for different values of 8. velocity profiles for different values of f and Pr, = 1.



36 R. M. C. So

- G'G(0}

9'/g'(0) or 1
G
% \\\
\>
NN
9\0

; - d
;0/°
S UV SN S — i L
0.4 06 08 1.0

1~ $4£(0) or 1- FYFY{0)

FiG. 8. A plot of the mean temperature profiles vs the mean
velocity profiles for different values of § and Pr, = 0.7,

velocity profiles. As f increases, the curve becomes
more and more like an inverted L. This behavior
simply reflects the rapid decrease of the mean velocity
compared to the mean temperature as incipient sep-
aration is approached.

The temperature profile G'(&) in the limit of ff —
20 can be determined by examining (41). As - x,
1/f — 0, therefore (41) becomes homogeneous. Since
the boundary conditions (42¢,d) are also homo-
geneous, the only valid solutions for G(&) and G'(&)
are that they are zero everywhere. This means that. in
the limit f— x, ©® = ©, everywhere outside the
near-wall region and the temperature increase from 0
to ®, occurs in the thermal sublayer. Therefore.
A,/B"'? approaches zero as ff— o for all values of
Pr.. Since the present analysis neglects the effects of
viscosity by assuming the Reynolds number to be very
large, there is no need to specify a Prandtl number.
Consequently, the thickness of the thermal sublaycr
cannot be determined and the gradient of ® at the
wall is not known. This gives rise to an undetermined
wall heat flux in the limit of § — «. Even though this
represents a shortcoming in the present analysis. it can
be easily remedied by including the viscous sublayer in
the analysis, much like that outlined by Mellor [5].

For the case § = 0 and Pr, = |, the solutions for /
and ¢ are identical. Since ¢’ for the f = 0 casc can be
represented either by (4) or (44), then

L A
Kg n 5)~

The dimensionless thermal boundary layer thickness
(n,;) for this case can be determined from the con-
dition: O(x,) = 0.990, . This gives 7; = /A = 0.4.
Using 4, = —0.6, (46) gives A, = 1.63. On the other
hand, if Pr, = 0.85 is assumed in accordance with the
analysis of Kader and Yaglom [10], then #;,=0.4

Av= A+ (46)

again, while A, = 0.21 and A, = 2.11. The approxi-
mate value assumed by Kader and Yaglom [10} and
later by Yaglom [13] is A, = 2.35. This is in good
agreement with the value of A, determined from the
present analysis. The effect of 4, on the calculated
Stanton number is examined in the next section.

Finally, the dimensionless heat flux (/Prjg” and
(®/Pr,)G" for the case Pr, = 1.0 are plotted in Figs. 9
and 10. respectively. Since the heat flux profiles for
other values of Pr. are similar to those shown. they
will not be presented here. Unhike the shear stress
profiles whose maxima move away {rom the wall as [/
increases [4]. the maxima of the heat flux profiles
remain at the wall. This is a consequence of the fact
that the pressure gradient does not have a direct effect
on the temperature field, only an indirect effect
through the interaction of the velocity field.

THE MODIFIED REYNOLDS ANALOGY

Near the wall, the flow is solely determined by lecal
properties and is independent of the freestream con-
ditions. Consequently. the temperature profile for this
region is given by the logarithmic law of the wall (1)
and is independent of the pressure gradient. Far away
from the wall, the defect temperature profile 1s given
by (44). The existence of an overlap between (1) and
(44) allows ® , /©. to be determined. 1f use 1s made of
(16) and the definition (29) for Sr. it can be shown
that

)+B,,+ A Pro. (47

o, i |] (“c;o'*
(CH v Ky n v

[n obtaining (47), use has been made of the identity

uA = U_0% An cxpression for ¢ can now be
obtained by combining (47) with (20). The result is

K Mn Ry + B+ A(f)

Ky In Ry + By + Au(B. Pr)

(4%)
For large f. the corresponding expression for ¢
becomes

KB ”31nRé*+B[i e ABB

Ky BT IN R+ BT A (B PP
{49)

c

Values of C are calculated for R, = 10° and based on
k =041, ky = k/Pr,, B=49, B, = 3.8 and values of
A, Aip"*, Ayand A,/B"7 as tabulated in Table 1. They
are listed in Tables 2(a) and (b) for values of § < |
and f = I, respectively, and are also plotted in Fig.
11 with C vs 8 and Fig. 12 with C vs Pr, to show the
dependence of C on f and Pr,. For accelerated flows,
the values of C are determined to be less than |
for the Pr, = 1 casc. These values are consistent with
values of ~0.7 to ~0.75 measured at a location out-
side of the viscous sublayer by Back and Cuffel [23,
24] in an accelerating flow through a convergent

divergent nozzle. Therefore, the measurements lend
credence to the present analysis. However, the impor-
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F1G. 9. Calculated heat flux profiles for small g and Pr,=1;(a) § <0, (b) > 0.

tant result of the present analysis is the predicted
trend of C which decreases in accelerated turbulent
boundary layers and increases in adverse pressure
gradient flows.

From Tables 2(a) and (b), it is obvious that C
changes rapidly as Pr, varies. On the other hand, the
effect of Pr, on the predicted mean profiles is not as
clearly illustrated in Figs. 9 and 10. Another way to
examine this effect more critically is to plot the mean
temperature vs the mean velocity for different values
of Pr, at a given value of §. Since Pr, cannot differ too
much from 1, these plots should be limited to values
of Pr, ranging from 0.7 to 2. Three sets of sample
plots are shown in Figs. 13-15 for § = —0.3, 0 and 1,
respectively. In all three pressure gradient cases, the
effect of Pr, on the profile shape is minimal for Pr, < 1.
In other words, as far as the calculations of the mean
profiles are concerned, a slight change in Pr, has little

effect on their predicted shapes. However, the cal-
culated C could be off by 10% or more. This suggests
that a proper choice for Pr, is obtained by matching
St rather than by matching the mean profiles.

In the limit § — o0, G'(£) goes to zero everywhere
outside of the near-wall layer. This leads to the dis-
appearance of the logarithmic behavior in the defect
profile and hence the overlap with the law of the wall.
As a result, C cannot be determined for this limiting
case. However, this does not represent a shortcoming
of the present analysis. As mentioned previously, the
wall heat flux cannot be determined in the limit of
B — oo because viscous effects are neglected in the
present formulation. Therefore, St is unknown and C
cannot be evaluated. A remedy is to include the vis-
cous sublayer in the formation along the line proposed
by Mellor [5].

It is of interest to note that the classical Reynolds
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analogy is not exactly correct even for the case f =0
and Pr, =1 (see Tables 2(a) and (b)). However. as
Ry — v, C— o, C— (1/Pr) for all values of f.
Therefore, the classical Reynolds analogy is valid only
in the limit of Pr, - 1 and R, — .

DISCUSSION

There are essentially very few data available for
the validation of (48) and (49) for finite values of fi.

However, part validation of (48) could be achicved
by comparing it with data in the literature {8. 9, 25
271

Reynolds et «al. [8] and Perry er al. [9) studied
heat transfer on a flat plate (f = 0). They reported
measurements of both skin friction coefficient and
Stanton number. If (48) is re-written in terms of the
skin friction coeflicient. the expression for the Stanton
number becomes

Table 2.
(a) Values of C determined at R, = 107 for different values of Pr, and

(
1

< |
Pr,
p
-0.5
-0.4
—0.3
-0.15
0
0.15
0.3
0.5
1
b) Ve
P
Pr,
s f
1 1
0.75 1.33
0.5 2
0.25 4
0.1 10
0.06 16.67
0.03 33.33
0 ¥,

0.7
A
258 078
207 097
76 1.09
L7 123
)60 133
—-0.07 141
0.44 148
LOR 156
2.55

1.73

0.85

.16

0.7

1.73
1.82
1.99
2.40
3.29
4.08
5.66

0.62

0.76

0.86

.90

1.04

1.10

IS
21
34

1.
I.

0.85

0.71
0.79

I

1.34
.42
1.54
1.86
2.56

444

0.40

0.44

0.19

0.22

0.25
0.28

alues of ¢ determined at Ry = 10° for different values of Pr. and

0.79 044 0.2%

1.08
1.50

0.61
0.85

0.38
0.52
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FiG. 11. Variations of C with f for two values of Pr,.

(Cy2)'"”

S = ) @IC) = A— B+ Byt Ay

(50)

Therefore, St can be calculated once C; is known.
Taking Pr. = 0.85 as suggested by Kader and Yaglom
[10] for flat boundary layers, (50) is used to evaluate
St based on the calculated C;. The calculated results
for C;are 0.00330 for Reynolds et a/.’s [8] experiment
and 0.00300 for Perry et al’s [9] experiment. The
corresponding measured values are 0.00330 and
0.00300, respectively. As for St, the measured values
are 0.00190 and 0.00180, respectively, for the exper-
iments of Reynolds et /. and Perry et al. The cor-
responding predictions are 0.00191 and 0.00176,
respectively. According to Perry et al. [9], the accuracy
of the St measurements is + 7% of the reported value.
Consequently, it can be said that the calculated values
are in good agreement with measured data.

The flat plate boundary-layer data [25-27] have
been analysed carefully by Kader and Yaglom [10].
They found that the Nusselt number Nu deduced from
the data correlates well with the equation

39

Re C}?

(51)

where Pr = 0.7 has been assumed for air. A similar
expression can be deduced for Nu if use is made of
(20), (29) and (48). The result, after the constant
valuesof 4 = —0.6, B=4.9, B,= 3.8 and 4, = 0.21
have been substituted, is

N Re C}?
U= i )
2.02Pr,(2/C,) "> —8.688 Pr, +8.093

(52)

Again Pr = 0.7 is assumed for air. It can be seen that
if Pr, = 0.85is used, 2.02Pr, takes on a value of 1.717,
which is about the same as that given in (51).
However, (8.093—8.688Pr) = 0.708, which is not
equal to that given in (51). A plot of (51) and (52) is
shown in Fig. 16. The close agreement between the
two expressions lends credence to the present analysis.
It should be pointed out that 4, and B, are parametric
in Pr. Therefore, (52) is also valid for other values of
Pr much like the empirical expression (51) derived by
Kader and Yaglom [10].

The DNS data reported by Kim and Moin [16], by
Kasagi et al. [17] and by Kasagi and Ohtsubo [18] are
for a bulk Reynolds number less than 6600. Therefore,
viscous effects are important and cannot be neglected.
In view of this, it is not appropriate to compare the
present analysis with the DNS data. However, the
DNS results are found to agree well with the empirical
mean temperature profiles of Kadar [28] at about the
same Reynolds number. Since Kader’s [28] empirical
results and the present results are in good agreement
with the similarity analysis of Yaglom [13], it can
be inferred that the present results are also in good
agreement with DNS data at the same Reynolds
number.

Finally, it should be noted that the present analysis
is applicable to turbulent flow with wall mass transfer
under equilibrium conditions. This follows directly
from equation (7) which is also valid for mass transfer
problems provided @ is interpreted to denote the mix-

Pr, t

Fi1G. 12. Variations of C with Pr, for different values of 8.
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FiG. 14. A plot of the mean temperature profiles vs the mean
velocity profiles for different values of Proand ff = 0.

ture mass fraction. Furthermore, the mixture mass
fraction can be normalised to zero at the wall and
unity in the free stream. Under these conditions, (10¢)
represents the mass flux at the wall and the governing
equations and boundary conditions are identical to
the heat transfer problem treated here.

CONCLUSIONS

Incompressible, equilibrium  turbulent thermal
boundary layers, characterised by ff = constant, have
been analysed. A family of defect temperature profiles
parametric in both f and Pr, has been obtained for
the permissible range, —0.54 < B < o ; corresponding
to turbulent boundary layers with a favorable pressure
gradient beyond which no equilibrium flow exists and
turbulent flows at incipient separation, respectively.
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From these results, a modified Reynolds analogy
defining the relation between St and €, has been
deduced. The proportionality constant C  thus
deduced is shown to be parametric in both f and
Pr.. For a given Pr,, C decreascs as f decreases and
increases when the pressure gradient becomes increas-
ingly adverse. On the other hand, when f§ is kept
constant, € decreases with increasing Pr,. These
trends are true for all values of §§ and Pr, examined.
The present results lead to the conclusion that the
classical Reynolds analogy is correct only in the limit
of =0, Pr,— 1 and R, — . It is further shown
that the Stanton and Nusselt numbers thus deduced
are in good agreement with measured data obtained
in air. Finally, it is pointed out that the present analy-
sis can be used to study equilibrium turbulent flows
with mass transfer at the wall.
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